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SUMMARY

The paper presents theoretical and implementation aspects related to a numerical integrator used for
the simulation of large mechanical systems with flexible bodies and contact/impact. The proposed
method is based on the Hilber-Hughes-Taylor implicit formula and is tailored to answer the challenges
posed by the numerical solution of index 3 Differential Algebraic Equations that govern the time
evolution of a multibody system. One of the salient attributes of the algorithm is the good conditioning
of the Jacobian matrix associated with the implicit integrator. Error estimation, integration step-size
control, and nonlinear system stopping criteria are discussed in detail. The simulations of an engine
model, a model with contacts, and a model with flexible bodies confirm a 2 to 3 speedup factor
compared with the integrators in MSC.ADAMS, a commercial mechanical system simulation package.
Copyright c© 2000 John Wiley & Sons, Ltd.
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of Multibody Dynamics

1. Introduction

The Hilber-Hughes-Taylor (HHT) method (also known as the alpha-method) [18] is widely
used in the structural dynamics community for the numerical integration of a linear set of
second Order Differential Equations (ODE). This problem is obtained at the end of a finite
element discretization. Provided the finite element approach is linear, the equations of motion
assume the form

Mq̈ + Cq̇ + Kq = F(t) (1)

The p × p mass, damping, and stiffness matrices, M, C, and K, respectively, are constant,
the force F ∈ p depends on time t, and q ∈ p is the set of generalized coordinates used to
represent the configuration of the mechanical system.
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2 D. NEGRUT ET AL.

A precursor of the HHT method is the Newmark method [25], in which a family of integration
formulas that depend on two parameters β and γ is defined:

qn+1 = qn + hq̇n +
h2

2
[(1− 2β) q̈n + 2βq̈n+1] (2a)

q̇n+1 = q̇n + h [(1− γ) q̈n + γq̈n+1] (2b)

These formulas are used to discretize at time tn+1 the equations of motion (1):

Mq̈n+1 + Cq̇n+1 + Kqn+1 = Fn+1 (2c)

Based on Eqs. (2a) and (2b), qn+1 and q̇n+1 are functions of the acceleration q̈n+1, which in
Eq. (2c) remains the sole unknown quantity that is obtained as the solution of a linear system.
This method is implicit and A-stable (stable in the whole left-hand plane) [1] provided [18]

γ ≥ 1/2 β ≥
(
γ + 1

2

)2

4
(3)

The only combination of β and γ that leads to second-order accuracy is γ = 1
2 and β = 1

4 .
This choice of parameters produces the trapezoidal method, which is both A-stable and second
order. The drawback of the trapezoidal formula is that it does not induce any numerical
damping in the solution, which makes it impractical for problems that have high-frequency
oscillations that are of no interest or parasitic high-frequency oscillations that are a byproduct
of the finite element discretization process [19]. Thus, the major drawback of the Newmark
family of integrators was that it could not provide a formula that was A-stable and second
order and displayed a desirable level of numerical damping. The HHT method came as an
improvement because it preserved the A-stability and numerical damping properties, while
achieving second order accuracy when used in conjunction with the second order linear ODE
problem of Eq. (1). The idea proposed in [18] actually does pertain not to the expression of the
Newmark integration formulas but rather to the form of the discretized equations of motion in
(2c). The new equation in which the integration formulas of Eqs. (2a) and (2b) are substituted
is

Mq̈n+1 + (1 + α)Cq̇n+1 − αCq̇n + (1 + α)Kqn+1 − αKqn = F
(
t̃n+1

)
(4)

where

t̃n+1 = tn + (1 + α)h (5)

As indicated in [19], the HHT method will possess the advertised stability and order
properties provided α ∈

[
− 1

3 , 0
]

and

γ =
1− 2α

2
β =

(1− α)2

4
(6)

The smaller the value of α, the more damping is induced in the numerical solution. Note that
in the limit, the choice α = 0 leads to the trapezoidal method with no numerical damping.

In the case of a multibody system, without any loss of generality, the set of generalized
coordinates considered henceforth is as follows: for each body i its position is described by
the vector ri = [xi, yi, zi]

T , while its orientation is given by the array of local 3-1-3 Euler
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HHT METHOD FOR INDEX 3 DAE OF MULTIBODY DYNAMICS 3

angles [30], ei = [ψi, θi,φi]
T . Consequently, for a mechanical system containing nb bodies,

q =
[
rT
1 eT

1 . . . rT
nb

eT
nb

]T ∈ Rp, p = 6nb. Note that this set of of position generalized
coordinates is augmented with deformation modes when flexible bodies are present in the
model.

In any constrained mechanical system, joints connecting bodies restrict their relative
motion and impose constraints on the generalized coordinates. Kinematic constraints are then
formulated as algebraic expressions involving generalized coordinates

Φ(q, t) =
[

Φ1(q, t) . . . Φm(q, t)
]T = 0 (7a)

where m is the total number of independent constraint equations that must be satisfied by the
generalized coordinates throughout the simulation. Although in its current implementation
the method handles nonholonomic constraints, in order to keep the presentation simpler, the
case of holonomic constraints is assumed henceforth.

Differentiating Eq. (7a) with respect to time leads to the velocity kinematic constraint
equation

Φq(q, t) q̇ + Φt(q, t) = 0 (7b)

where the over-dot denotes differentiation with respect to time and the subscript denotes
partial differentiation, Φq =

[
∂Φi
∂qj

]
, for 1 ≤ i ≤ m, 1 ≤ j ≤ p. The acceleration kinematic

constraint equation is obtained by differentiating Eq. (7b) with respect to time:

Φq(q, t) q̈ +
(
Φq(q, t)q̇

)
q
q̇ + 2Φqt(q, t) q̇ + Φtt(q, t) = 0 (7c)

The state of the mechanical system changes in time under the effect of applied forces such
that Eqs. (7a)–(7c) are satisfied at all times. The time evolution of the system is governed by
the Lagrange multiplier form of the constrained equations of motion [17],

M(q)q̈ + ΦT
q (q)λ = Q (q̇,q, t) (7d)

where M(q) ∈ p×p is the generalized mass, and Q (q̇,q, t) ∈ p is the action (as opposed to
the reaction ΦT

q (q)λ) force acting on the generalized coordinates q ∈ p. These equations are
neither linear nor ordinary differential as is the case in Eq. (1), first and foremost because the
solution q(t) must also satisfy the kinematic constraint equations in Eq. (7a). These constraint
equations lead in Eq. (7d) to the presence of the reaction force ΦT

q (q)λ, where λ ∈ m is the
Lagrange multiplier associated with the kinematic constraints.

In addition to the equations of motion and kinematic constraint, several classes of equations
need to be considered in a general-purpose mechanical simulation package:

1. Ordinary differential equations that in the most general case are provided in implicit
form

d(Ẋ,X,q, q̇, q̈,λ,V,F, t) = 0nd (8a)

This type of differential equations is encounter, for instance, when controls are active in
the system, such as is the case in cars with an anti-lock braking system (ABS), active
suspension control, and so forth. The state of the controller is X, its time derivative is
Ẋ, and the assumption is that in its implicit-form Eq. (8a) properly and uniquely defines
Ẋ as a function of the state of the system through the user-specified function d. If nd

represents the number of differential states, then X,d ∈ nd .
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4 D. NEGRUT ET AL.

2. User-defined variables, which can technically be regarded as aliases or definition
equations. A set of nv user-defined variables V ∈ nv is typically specified through
an equation of the form

V − v(q, q̇, q̈,X, λ,V,F, t) = 0nv (8b)

which, during the solution sequence, are solved (or rather evaluated) simultaneously
with the equations of motion and the kinematic constraint equations. Here v ∈ nv is a
user-defined function that depends on other system states as indicated in Eq. (8b).

3. External force definition, F, which allows the user to define the set of nf applied forces
F ∈ nf that act on the system. This is the mechanism through which a complex tire
model can be interfaced to a vehicle model that supports user-defined bushing elements,
custom nonlinear damper and friction models, and the like.

F− f(q, q̇, q̈,X, Ẋ,λ,V,F, t) = 0nf (8c)

Equations (7a)–(7d) comprise a system of index 3 DAE [5]. It is known that differential-
algebraic equations are not ordinary differential equations [27]. Analytical solutions of Eqs. (7a)
and (7d) automatically satisfy Eqs. (7b) and (7c), but this is no longer true for numerical
solutions. In general, the task of obtaining a numerical solution of the DAE of Eqs. (7a)–
(7d) is substantially more difficult and prone to intense numerical computation than that
of solving ordinary differential equations. For an account of relevant work in the area of
numerical integration methods for the DAE of multibody dynamics the reader is referred
to [1, 5, 13, 16, 22, 28] and references therein.

The theory and attractive features associated with the HHT method have been derived
in conjunction with a linear second-order ODE. The only similarity between Eqs. (1) and
(7d) is that they are both second order and qualitatively obtained from Newton’s second
law. In [7] and more recently [31], for the purpose of stability and convergence analysis the
constrained equations of motion are tackled in a stabilized index 2 DAE framework. The HHT
method is also discussed in [11] and more recently in [10], where the proposed implementation
is based on a technique that accounts for violations in the position and velocity constraints
in a stabilization framework similar to the one proposed in [3]. There are also several Runge-
Kutta-based approaches for highly oscillatory mechanical system simulation that, like the HHT
method, display the attractive attribute of selectively damping frequency at the high end of the
spectrum. In [26], a Singly Diagonal Runge-Kutta (SDIRK)-based method allows the user to
choose, within certain bounds, the diagonal value in the formula and thus control the amount
of numerical damping associated with the algorithm. The role of the diagonal element in the
formula becomes similar to the role of the α parameter in the HHT method. An approach
based on additive Runge-Kutta methods that has the potential to accurately handle highly
oscillatory multibody dynamics simulation was introduced in [20], and further discussed in [29].
These novel Runge-Kutta-based algorithms are mathematically sound, but they require more
time to achieve, vis-a-vis industrial-strength applications, the level of acceptance currently
associated with the well-established HHT method.
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HHT METHOD FOR INDEX 3 DAE OF MULTIBODY DYNAMICS 5

2. The proposed algorithm

In addition to the Newmark formulas of Eq. (2) an integration formula is required for the
solution of the first-order ODE in Eq. (8a). The general formula considered for this purpose is

Xn+1 = Xn + hẊn + hρ
(
Ẋn+1 − Ẋn

)
(9a)

in which case

∂Xn+1

∂Ẋn+1

= ρh Ind (9b)

where throughout this paper Is stands for the identity matrix of dimension s. The discussion
about the choice of the parameter ρ is deferred to section 3.1.2.

For the multibody dynamics problem stated, the unknowns of interest are the generalized
positions, velocities, and accelerations q, q̇, and q̈, respectively, the Lagrange multipliers λ,
the applied-force states F, the user-defined variables (aliases) V, and the states associated
with the user-defined ordinary differential equations, that is, X and Ẋ. The index 3 DAE
multibody dynamics problem that must be solved to compute these quantities is neither linear
nor ordinary differential, and the HHT method is thus applied for a different class of problems
from that originally designed for. Rather than approaching the solution within an index 2
framework [31, 7] or using a stabilization approach [11, 10], the proposed algorithm uses
the implicit Newmark formulas to discretize the equations of motion and requires that the
position-level kinematic constraint equations be satisfied at the end of each time step. This
is a direct index 3 approach, and it requires at each integration time step the solution of a
nonlinear system of equations. The theoretical foundation of this method is provided first by
the stability and convergence results in [21] and [4], and second by the fact that, as pointed out
in [19], the HHT method is equivalent to a three-step implicit multi-step integration formula.
A detailed local and global convergence analysis of the Newmark formulas when used in the
context of index 3 Differential Algebraic Equations of multibody dynamics is also provided in
[24].

At the cornerstone of the proposed algorithm lies the simple idea on which the HHT method
is built: recycle the Newmark integration formulas, but slightly change the equations of motion
to account for the set of forces acting on the system at two consecutive integration points. The
algorithm is modified to a small extent to accommodate the set of differential and algebraic
equations (8a) through (8c) that a general-purpose simulation package would have to handle.
Thus, in the spirit of the original HHT formulation, the discretization of the multibody
dynamics equations of motion yields

(Mq̈)n+1 + (1 + α)
(
ΦT

qλ−Q
)
n+1

− α
(
ΦT

qλ−Q
)
n

= 0 (10)

For notational simplicity, when obvious, the dependency of some quantities on q and/or q̇
and/or time t will be omitted, as was done in Eq. (10). From an implementation standpoint it
is more advantageous to scale the previous equation by (1 + α) to obtain the equivalent form

1
1 + α

(Mq̈)n+1 +
(
ΦT

qλ−Q
)
n+1

− α

1 + α

(
ΦT

qλ−Q
)
n

= 0 (11a)

Likewise,
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6 D. NEGRUT ET AL.

Φ (qn+1, tn+1) = 0 (11b)

d
(
Ẋn+1,Xn+1,qn+1, q̇n+1, q̈n+1, λn+1,Vn+1,Fn+1, tn+1

)
= 0 (11c)

Vn+1 − v (qn+1, q̇n+1, q̈n+1,Xn+1,λn+1,Vn+1,Fn+1, tn+1) = 0 (11d)

Fn+1 − f
(
qn+1, q̇n+1, q̈n+1,Xn+1, Ẋn+1,λn+1,Vn+1,Fn+1, tn+1

)
= 0 (11e)

Everywhere in Eq. (11), in an index 3 DAE direct approach, the Newmark integration formulas
of Eq. (2) are used to express q and q̇ as a function of q̈, while Eq. (9a) is used to discretize the
set of ordinary differential equations (express X as a function of Ẋ). A Newton-like algorithm
[12] is used to solve the resulting system of nonlinear equations for the set of unknowns (in
this order) q̈, λ, Ẋ, V, and F. Note that the generalized force Q of Eq. (7d) is obtained by
projecting the force states F along the generalized coordinates q; that is, Q(q,F) = Π F,
where the projection operator Π = Π(q) depends on the choice of generalized coordinates.
The iterative method requires at each iteration (k) the solutions of the linear system





M̂ ΦT
q 0 0 −Π

Φq 0 0 0 0(
dq̈ + γhdq̇ + βh2dq

)
dλ dẊ + ρhdX dV dF

−
(
vq̈ + γhvq̇ + βh2vq

)
−vλ −ρhvX I− vV −vF

−
(
fq̈ + γhfq̇ + βh2fq

)
−fλ −fẊ − ρh fX −fV I− fF









∆q̈
∆λ
∆Ẋ
∆V
∆F





(k)

=





−e1

−e2

−e3

−e4

−e5





(k)

(12)
where ei are the residuals in satisfying the set of discretized equations of motion, constraint
equations, discretized DIFFs, variable definition equations, and applied force definition
equations, respectively, and unless otherwise specified, all the quantities in e1 through e5

are evaluated at time tn+1:

e1 =
1

1 + α
(Mq̈)n+1 +

(
ΦT

qλ−Q
)
n+1

− α

1 + α

(
ΦT

qλ−Q
)
n

e2 =
1

βh2
Φ (q, t)

e3 = d
(
Ẋ,X,q, q̇, q̈, λ,V,F, t

)
(13)

e4 = V − v (q, q̇, q̈,X,λ,V,F, t)

e5 = F− f
(
q, q̇, q̈,X, Ẋ,λ,V,F, t

)

The matrix M̂ in Eq. (12) is defined as

M̂ =
∂e1

∂q̈
=

1
1 + α

M +
[

1
1 + α

(Mq̈)q +
(
ΦT

qλ
)
q
−ΠqF

]
βh2 (14)

Note that the nonlinear equations associated with the position kinematic constraints are
scaled by 1

βh2 in order to improve the conditioning of the coefficient matrix in Eq. (12). This is
a compromise reached after considering the following options: (a) have the level-zero positions,
q, and differential states, X, be the unknowns (replacing q̈ and Ẋ), but then some entries in
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HHT METHOD FOR INDEX 3 DAE OF MULTIBODY DYNAMICS 7

the Jacobian matrix in Eq. (12) will end up divided by βh2; (b) have q̈ and Ẋ be the unknowns,
but then the second row in the Jacobian matrix comes multiplied by βh2; (c) do as in (b),
except that the set of positions kinematic constraint equations are scaled by 1

βh2 . Option (a)
is implemented by the default integrator used in the MSC.ADAMS simulation package [23]
(here entries get divided by a factor β0h rather than βh2, as the second-order equations of
motion are reduced to an equivalent first-order system of differential equations that is then
solved with a BDF-type integrator [14]). On numerous occasions this has been observed to be
the cause of numerical problems once the step-size becomes very small and consequently some
entries in the Jacobian become extremely large. A bad Jacobian condition number ensues, and
the quality of the Newton corrections becomes poor. The option (b) was not embraced because
the problem at (a) plagues this approach as well, though in a more subtle way. If h becomes
very small, the second row of the Jacobian matrix is scaled by βh2, which practically makes all
the entries in this row very small and thus leads to ill conditioning. Option (c) proved a good
solution because typically the type of error that one sees in satisfying the position kinematic
constraint equations is very small. It is never that these constraint equations are problematic
in a simulation but rather some discontinuity in the model that causes the step-size h to
assume small values. But if h is small, when advancing the simulation the position constraint
violation stays very small, and the norm of e2 always remains bounded. A formal proof of
this result is provided in [24], which also discusses the nonsingular character of the coefficient
matrix in Eq. (12) when h → 0, and the convergence of the iterative Newton scheme. Thus,
a salient feature of the approach is that it eliminates the ill conditioning typically associated
with the index 3 integration of the DAE of multibody dynamics. Two factors are responsible
for this: (i) the position kinematic constraint equations are appropriately scaled, and (ii) the
set of unknowns q̈ and λ are consistent in the sense that they are qualitatively of the same
kinematic level, that is, two (as opposed to mixing q, which is level zero, with λ, which is level
two).

With the corrections computed as the solution of the linear system of Eq. (12), the numerical
solution is improved at each iteration as q̈(k+1) = q̈(k) + ∆q̈(k), λ(k+1) = λ(k) + ∆λ(k),
Ẋ(k+1) = Ẋ(k)+∆Ẋ

(k)
, V(k+1) = V(k)+∆V(k), F(k+1) = F(k)+∆F(k). The following sections

present in detail the answer to three key questions: (a) When is the computed solution accurate
enough? (b) How to select the integration step-size h? and (c) When to stop the Newton-like
iterative process that computes at each integration step the unknowns q̈, λ, Ẋ, V, and F?
Recall that once q̈ and Ẋ are available, Eqs. (2a), (2b), and (9a) are used to evaluate q, q̇,
and X, respectively.

3. Implementation details for proposed algorithm

3.1. Estimating the local integration error in the HHT method

Since an approximation of the global error at time tn+1 cannot be obtained in general, the goal
is to produce an approximation of the local integration error in advancing the simulation from
step n to n + 1. Once the local integration error is available, an algorithm is implemented to
ensure that this error stays smaller than a user-prescribed tolerance. Based on a linearization
of the equations of motion in Eq. (7d) along with an asymptotic expansion of the solution q,

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
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8 D. NEGRUT ET AL.

a strategy for estimating the local integration error in positions is presented in section 3.1.1.
Following the same approach, namely, linearization and asymptotic expansion, an estimate
of the local integration error is provided in section 3.1.2 for the state X associated with the
ordinary differential equations defined by Eq. (8a).

3.1.1. Local integration error in positions coordinates. The approximation of the local
integration error for HHT method is similar to the approach proposed in [32] for the Newmark
method. The discussion is going to focus on Eq. (4), because locally a linearization of Eq. (7d)
leads to the previous form. Thus, Eq. (4) is rewritten as

Mq̈n+1 + (1 + α) (Cq̇n+1 + Kqn+1)− α (Cq̇n + Kqn) = F
(
t̃n+1

)
(15)

with t̃n+1 defined as in Eq. (5).
For the purpose of computing the local integration error, the usual assumption is that the

configuration at time tn, (qn , q̇n, q̈n) is perfectly consistent. That is, it satisfies the equations
of motion, along with the time derivatives of the equations of motion:

Mq̈n + Cq̇n + Kqn = Fn (16a)

M
...qn + Cq̈n + Kq̇n = Ḟn (16b)

The Newmark integration formula of Eq. (2) is rewritten in the equivalent form

qn+1 = qn + hq̇n +
h2

2
q̈n + βh2x (17a)

q̇n+1 = q̇n + hq̈n + hγx (17b)

q̈n+1 = q̈n + x (17c)

where the unknown x represents the change in the value of acceleration from time tn to tn+1.
The goal is to compute an estimate of the error at the end of one integration step (the local
integration error)

δq
n+1 = qn+1 − q̃n+1 (18)

where q̃n+1 is the exact solution of the initial value problem

Mq̈ + Cq̇ + Kq = F (19)

that starts in the configuration (qn, q̇n, q̈n) at t = tn.
Using Taylor’s theorem, one obtains q̃n+1 as

q̃n+1 = qn + hq̇n +
h2

2
q̈n +

h3

6
...qn + O

(
h4

)
(20)

The local integration error δq
n+1 becomes available as soon as the acceleration correction x is

available. In order to obtain an estimate for x, based on Eqs. (15) and (17)

M (q̈n + x) + (1 + α)
[
C (q̇n + hq̈n + hγx) + K

(
qn + hq̇n +

h2

2
q̈n + βh2x

)]

−α (Cq̇n + Kqn) = Fn + (1 + α) Ḟnh + O
(
h2

)
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HHT METHOD FOR INDEX 3 DAE OF MULTIBODY DYNAMICS 9

where Taylor’s theorem was used to expand F (tn + (1 + α) h). Using Eqs. (16a) and (16b),

[
M + (1 + α)hγC + (1 + α)βh2K

]
x = (1 + α)M

...qnh + O
(
h2

)
(21)

Denoting D = M + (1 + α) hγC + (1 + α)βh2K, since D−1 = M−1 + O (h) · Ip, the equation

D x = (1 + α)M
...qnh + O

(
h2

)
(22)

leads to
x = (1 + α)

...qnh + O
(
h2

)
(23)

and therefore
δq
n+1 = qn+1 − q̃n+1 = h3

[
β (1 + α)− 1

6

]
·
...qn + O

(
h4

)
(24)

Substituting for
...qn from Eq. (23) and ignoring the higher-order terms leads to

δq
n+1 ≈

[
β − 1

6 (1 + α)

]
h2x (25)

which provides an effective way of computing the local integration error, since the required
quantities are available at the end of the corrector stage.

3.1.2. Local integration error in X states. A necessary condition for the DIFF of Eq. (8a) to
be locally well defined is that [5] det

(
∂d
∂Ẋ

)
(= 0 holds in a neighborhood of the current system

configuration. Assuming that the user-defined form for d satisfies this requirement, by using
the implicit function theorem and Taylor’s theorem, Ẋ can be locally expressed explicitly as a
function of X and time t:

Ẋ = AX + b (t) (26)

where A is a constant matrix that depends on the configuration of the system at the time when
the linearization is carried out, and b is a function of time. One additional time derivative
leads to

Ẍ = AẊ + ḃ (t) (27)

The integration formula used to integrate the DIFF in Eq. (8a) is equivalently expressed as

Xn+1 = Xn + hẊn + ρhxd (28)

where xd = Ẋn+1 − Ẋn. The goal is to produce an approximation of the local integration
error when advancing the simulation from tn to tn+1. To this end, suppose that X̃n+1 is the
exact solution at tn+1, while Xn+1 is the approximate solution as computed by the proposed
algorithm. By using Taylor’s theorem,

X̃n+1 = Xn + hẊn +
1
2
h2Ẍn + O

(
h3

)
(29)

Considering the definition of the local truncation error δd
n+1 ≡ Xn+1−X̃n+1, based on Eq. (28)

and Eq. (29),

δd
n+1 = ρhxd −

1
2
h2Ẍn + O

(
h3

)
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10 D. NEGRUT ET AL.

Thus δd
n+1 is available as soon as xd becomes available. Note that xd should satisfy

Ẋn + xd = AXn + bn + A
(
hẊn + ρhxd

)
+ hḃn + O

(
h2

)
(30)

Substituting for Ẋn from Eq. (26) into Eq. (30) and performing simple manipulations yields

xd = hẌn + O
(
h2

)
(31)

Therefore,

δd
n+1 =

(
ρ− 1

2

)
h2Ẍn + O

(
h3

)
(32)

which leads to
δd
n+1 ≈

(
ρ− 1

2

)
hxd (33)

This is an effective way of computing the local integration error because all the quantities in
the right side of the previous equation are available at the end of the corrector phase.

Note that Eq. (32) is useful for ρ (= 0.5. The choice ρ = 0.5 corresponds to the trapezoidal
formula, for which one additional term in the Taylor expansion would need to be considered
throughout the derivation. This is qualitatively similar to the presentation herein; and given
the rather poor behavior of the trapezoidal method in the context of index 3 DAE of multibody
dynamics [24], this case is not detailed further. Other choices of ρ ∈ ( 1

2 , 1) are viable, and it
is insightful to compare Eq. (9) with the Newmark formula of Eq. (2b). This idea can be
taken one step further and combined with the introduction of a fictitious variable Z, defined
as Ż = X. In this case Eq. (8a) leads to a second-order equation in Z, in which case straight
Newmark can be applied to find the solution X. This approached is followed in [6].

3.2. The accuracy test

With the local truncation error in positions q and differential states X obtained as indicated
in Eqs. (25) and (33), the numerical integrator has to certify at time tn+1 the accuracy of
the newly computed solution. Two tests performed to this end are used to accept or reject
the integration step. The tests are based on the value of the position and differential states
composite errors, eq and ed, respectively:

eq =

√√√√1
p

p∑

i=1

(
δq
i,n+1

Y q
i

)2

ed =

√√√√ 1
nd

nd∑

i=1

(
δd
i,n+1

Y X
i

)2

(34)

where Y q
i = max(1, maxj=1,...,n |qi,j |) , and δq

i,n+1, 1 ≤ i ≤ p, is the ith component of δq
n+1.

The composite error is compared with the user-prescribed error ε. Introducing the notation

ψq ≡
pε2

[
β − 1

6(1+α)

]2 (35a)

the error test eq ≤ ε is equivalently expressed as

‖x‖2q ≤
ψq

h4
(35b)
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where ‖ · ‖q represents a weighted norm [2] defined as ‖x‖q ≡
[∑p

i=1

(
xi

Y q
i

)2
] 1

2

.

For the local integration error in the differential states, introducing the notation

ψd =
nd · ε2

(
ρ− 1

2

)2 (36a)

the accuracy test ed ≤ ε leads to the requirement

‖xd‖2X ≤
ψd

h2
(36b)

where the corresponding weighted norm is defined as ‖x‖X ≡
[∑nd

i=1

(
xi

Y X
i

)2
] 1

2

. Note that all

the quantities that enter the accuracy tests in Eqs. (35b) and (36b) are available after the
nonlinear discretization system of Eq. (11) is solved, and a decision is made at that point
whether the newly computed solution is accepted or rejected.

3.3. The step-size selection

Step-size selection plays a central role in the numerical integration algorithm. If eq + ε and
ed + ε, CPU time is wasted in computing a solution that unnecessarily exceeds the user-
demanded accuracy. At the other end of the spectrum, a step-size selection mechanism that
is too aggressive leads to a large number of integration steps at the end of which the user
accuracy requirements are not met. The effort to perform such an integration step is wasted,
as the integration step is discarded for a new attempt with a more conservative step-size h.
To strike the right note, the integration step-size is always chosen such that the error at the
end of the next integration step is precisely equal to the one deemed acceptable by the user
and quantitatively defined by ε. By ignoring the terms of order h4 and higher, and denoting
ci =

[
β (1 + α)− 1

6

]
·
...q i,n, Eq. (24) suggests that the position composite error is proportional

to the cube of the step-size h. Ideally, the new step-size hnew is selected such that

ε = h3
new

[
1
p

p∑

i=1

(
ci

Yi

)2
] 1

2

Therefore, e
ε = h3

h3
new

, from where hnew = h ε
1
3

[
1√
p

(
β − 1

6(1+α)

)
h2 · ‖x‖q

]− 1
3
. By defining

Θq =
‖x‖2q · h4

ψq
(37a)

the position-based criterion for selecting the step-size becomes

hq
new =

s h

Θ
1
6
q

(37b)

A safety factor s = 0.9 was used to scale the value of the new step-size [16], and the superscript
q was added to indicate that this value of the new step-size is based on position considerations.
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12 D. NEGRUT ET AL.

The approach for computing hd
new follows step by step the position-based selection of hq

new.

Defining sd = ρ− 1
2√

nd

[∑nd

i=1

(
Ẍi,n

Yi

)2
] 1

2

, it can be concluded that the error depends quadratically

on the step-size h, like ed = sd h2. Therefore, hnew should be selected such that ε = sd h2
new,

which leads to hnew = h ε
1
2 e−

1
2 . Hence, hnew = h

[
ψd

h2·‖xd‖2X

] 1
4
. By defining

Θd =
‖xd‖2X · h2

ψd
(38a)

the differential-based criterion for selecting the step-size becomes

hd
new =

s h

Θ
1
4
d

(38b)

where s = 0.9 is a safety factor [16].

3.4. The correction stage

The last issue that needs to be addressed is how accurate the quantities x and xd of Eqs. (17)
and (28), respectively, should be computed. These quantities are obtained as the solution
of an iterative Newton-like algorithm that requires at least one evaluation of the residuals
in Eq. (13), followed by a forward/backward substitution to retrieve the corrections in the
unknowns. However, one corrector iteration might be as expensive as doing all of the above
but preceded by a full-blown evaluation and factorization of the coefficient matrix of the linear
system of Eq. (12). These operations are expensive and should be kept to a minimum.

Suppose that x is approximated by x(k), the value obtained after k corrector iterations.
Therefore, according to Eqs. (24) and (34), the composite error eq is actually computed based
not on the value x, but rather on x(k), which will lead to a value eq,(k). It is therefore important
to have a good approximation x(k) for x if the algorithm is to produce a reliable measure of
the local integration error (a similar argument holds for the differential error ed). Another
reason for having an accurate approximation is that the stability and convergence results
associated with a numerical integrator are derived under the assumption that the numerical
solution is computed to the specifications of the integration formula; in other words, no room
is left for errors in finding the numerical solution at the end of one integration step. Finding
an approximate solution translates into solving a different initial value problem, which can
be close to or far from the original problem based on how accurate the nonlinear system of
Eq. (11) is solved and the nature of the original initial value problem itself. In summary,
based on these two remarks, the corrector stopping criterion adopted here is that the relative
difference between e and e(k) should stay smaller than a threshold value denoted by c. A typical
value recommended in the literature is c = 0.001 [16]. The local integration error at the end
of one time step is eq =

[
β − 1

6(1+α)

]
h2
√

p‖x‖q. After iteration k, the approximation obtained

is eq,(k) =
[
β − 1

6(1+α)

]
h2
√

p‖x
(k)‖q. The question is what k should be such that eq,(k) is close

to eq within 0.1% (c = 0.001); that is, |eq − eq,(k)| ≤ c |eq|. Since eq is not available, the test
is replaced by

∣∣e
q − eq,(k)

ε

∣∣ ≤ c (39)
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where ε is the user-prescribed error. Note that the goal of the step-size control is to keep eq as
close as possible to ε; therefore, substituting the original condition with Eq. (39) is acceptable.
Then,

∣∣eq − eq,(k)
∣∣ ≤

∣∣β − 1
6 (1 + α)

∣∣ h2

√
p
‖x− x(k)‖q (40)

and an approximation for ‖x− x(k)‖q is needed. Since for the Newton-like method employed
the convergence is linear, there is a constant ξ that for convergence must satisfy 0 ≤ ξ < 1
such that [12]

‖-x(k+1)‖q ≤ ξ · ‖-x(k)‖q (41)

where -x(k) represents the correction at iteration k, x(k+1) = x(k) +-x(k). Immediately,

‖x− x(k+1)‖q ≤ ‖-x(k)‖q · ξ

1− ξ
(42)

The value ξ is going to be approximated by

ξ ≈ ξk =
‖-x(k)‖q

‖-x(k−1)‖q
(43)

Based on Eq. (40),

∣∣eq − eq,(k)
∣∣ ≤

[
β − 1

6 (1 + α)

]
h2

√
p
‖-x(k)‖q · ξ

1− ξ
(44)

The condition of Eq. (39) is then satisfied as soon as

(
ξ

1− ξ

)2

‖-x(k)‖2q ≤ c2 · ψq

h4
(45)

Note that at the right of the inequality sign are quantities that remain constant during
the corrector iterative process, while at the left are quantities that change at each iteration.
Likewise, note that the stopping criterion of Eq. (45) can be used only at the end of the second
iteration because only then can an approximation of the convergence rate ξ be produced. In
other words, the proposed approach will not be able to stop the iterative process after the
first iteration. This is not a matter of great concern, however, because models as simple as a
one-body pendulum are already nonlinear.

Qualitatively, the same approach used for the positions-based stopping criterion is used for
the differential states. Without getting into details, this will lead to the following stopping
criterion:

(
ξd

1− ξd

)2

· ‖-x(k)
d ‖2X ≤ c2 · ψd

h2
(46)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



14 D. NEGRUT ET AL.

3.5. The prediction stage

For the Newton-like algorithm used to find the solution of Eq. (13), a good starting point is
essential both for convergence and for reducing the effort in finding the approximation of the
solution at time tn+1. In [19], the generalized accelerations prediction is obtained by taking
q̈n+1 = q̈n and Ẋn+1 = Ẋn, which is equivalent to setting x = 0 and xd = 0. A new strategy
is proposed based on polynomial extrapolation, in which a polynomial of order up to three is
used to produce an initial guess for the unknowns. The approach used in [19] is thus obtained
by setting the degree of the interpolation polynomial to zero. The polynomial extrapolation is
based on Newton divided differences and uses Horner’s scheme for evaluation of the interpolant
at time tn+1 [2]. The degree of the interpolant is adjusted throughout the simulation based on
the smoothness of the numerical solution.

3.6. Summary of key formulas

Summarized below are the answers to the questions (a) What is the stopping criteria for the
nonlinear discretization algebraic system? (b) How is the integration error computed? and (c)
How is the step-size controlled?

3.6.1. Summary of key formulas for handling of the generalized coordinates.

Notation:

ψq ≡
pε2

[
β − 1

6(1+α)

]2 Θq =
‖x‖2q · h4

ψq
(47a)

Prediction: Performed based on divided differences (Newton interpolation and Horner’s
scheme for extrapolation at tn+1).

Correction: Linear convergence rate allows for computation of ξ (Eq. (43)). Stopping
criterion: (

ξ

1− ξ

)2

‖-x(k)‖2q ≤ c2 ψq

h4
, (c = 0.001) (47b)

Accuracy Check: Performed after corrector converged,

Θq ≤ 1 (47c)

Step-Size Selection: With a safety factor s = 0.9,

hq
new =

s h

Θ
1
6
q

(47d)

3.6.2. Summary of key formulas for handling of the differential states.

Notation:

ψd =
nd · ε2

(
ρ− 1

2

)2 Θd =
‖xd‖2X · h2

ψd
(48a)
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Correction: Linear convergence rate allows for computation of ξd. Stopping criterion:
(

ξd

1− ξd

)2

‖-x(k)
d ‖2X ≤ c2 ψd

h2
, (c = 0.001) (48b)

Accuracy check: Performed after corrector converged,

Θd ≤ 1 (48c)

Step-size selection: With a safety factor s = 0.9,

hd
new =

s h

Θ
1
4
d

(48d)

In multibody dynamics simulations, the number of differential states is orders of magnitude
smaller than the number of states associated with the generalized coordinates; that is, nd + p.
Nevertheless, the stopping criteria as well as the selection of the new step-size hnew take into
account both the position and differential states. For stopping the Newton-like algorithm,
iterations are carried out until the conditions of Eqs. (47b) and (48b) are simultaneously
satisfied. The new step size is chosen as hnew = min

(
hq

new, hd
new

)
. An integration step is not

accepted unless both accuracy conditions of Eqs. (47c) and (48c) are satisfied.

4. Numerical Experiments

The proposed algorithm has been implemented in the commercial simulation package
MSC.ADAMS and released in its 2005 version. The method has been extensively tested with
more than 1,600 mechanical systems of various complexity. Three representative numerical
experiments aimed at comparing the HHT method and GSTIFF, the default integrator in the
MSC.ADAMS [23] simulation package, are presented herein. The comparison primarily focuses
on efficiency issues, although the accuracy of the results is touched upon. This latter aspect is
analyzed extensively in [24].

4.1. A Poly-V belt model

The model in Fig .1 is an accessory drive for a car engine with a poly-V belt (V-
ribbed belt) wrapped around three pulleys (crank, water pump, and alternator), and one
tensioner (deviation pulley). The poly-V belt provides drive by adhesion, and compared with
conventional belts of the same width, it augments the contact area, increasing power transfer.
The larger of the pulleys (the lowest one in the picture) is the engine crankshaft pulley. Right
above it is the water-pump pulley, and at the left is the alternator pulley. There is a tensioner in
between the crankshaft and alternator pulleys; its pivot point is shown in the figure as the little
ring just outside the belt. The tensioner uses a rotational spring element that includes damping
and stiffness effects. The units used for this model are Newton, kilograms, milliseconds, and
millimeters.
One driving torque is on the crankshaft, and two resisting torques act on the alternator and
water pulleys. The belt is modeled by using 100 segments connected by a set of 400 VFORCE
elements [23]. Each VFORCE element adds a set of three component longitudinal forces. The
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16 D. NEGRUT ET AL.

belt

xz
y

Figure 1. Poly-V accessory belt.

total number of equations associated with the model is 3,725. The length of the simulation
was 200 milliseconds, which results in more than a full revolution of the belt. The GSTIFF
integrator was run with ERROR=1.E-4, while HHT was run with ERROR=1.E-5 (this is the
ε variable of Eqs. (47a) and (48a)). Because of the different error control strategies employed
by the two integrators, it has been noticed that GSTIFF typically can be run with a more lax
ERROR for results that are qualitatively similar to HHT. The simulation time for GSTIFF
was 1286 seconds, while HHT completed the simulation in 485 seconds. The simulation was
run on a Windows 2000 machine, with Pentium III CPU, and 512 MB RAM.

Figure 2 shows the X-component of the reaction force in the revolute joint that connects
the alternator with the rest of the system. The agreement of the results is very good: the peak
difference between the two sets of results is less than 3%.

Figure 4 shows the time variation of the angular velocity of the alternator. The plot displays
good correlation between the results obtained with the GSTIFF and the HHT integrators.
Figure 5 confirms that the difference between the angular velocity computed with GSTIFF
and HHT integrator is less than 1%. This value is smaller than the 3% noticed for the difference
in force in the alternator joint. This is an expected trend all across the simulation results, where
the quality of the velocity level variables is better than the quality of the force/acceleration
variables. Although not shown here, the position-level variables for the two integrators are
practically identical, and in general they are qualitatively better than the velocity-level results
obtained with the two integrators.

4.2. A track model

The track presented in Fig. 6 is a detailed model of a subsystem of a low-mobility hydraulic
mining excavator. Weight and extreme operating conditions cause high mechanical stresses
on crawler tracks especially in the case of big hydraulic excavators of 1,000 tons and higher.
Long haulage distances, frequent place changes, and demanded 90% machine availabilities are
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Figure 2. X-comp. of reaction force.
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Figure 3. HHT and GSTIFF differences.
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Figure 6. Track subsystem model.

standard requirements in the industry. The type of simulation reported here is typical in the
virtual prototyping cycle when trying to meet these requirements and extend life cycles of the
track and drive systems.

The model in Fig. 6 contains a set of 61 moving parts. It has one planar joint, 54 revolute
joints, 1 translational joint, 4 fixed joints (a joint that removes all six degrees of freedom), one
inline joint primitive, and one motion. This results in a model with 61 degrees of freedom. The
relatively large number of degrees of freedom indicates that the motion of this system is not
controlled as much through constraints (joints) as through the geometry of the components
and a number of 690 three-dimensional contact elements (sprocket-track, roller-track, track-
track, and track-ground contacts). The HHT integrator resulted in a set of 4,675 equations for
the dynamic analysis of this model.

A 14-second simulation was run on a Windows XP Dell Precision M530 machine, with 2
GB ECC RAM, and 2.8 GHz HyperThread Xeon CPUs. A first set of results was obtained
with the default version of the ADAMS/Solver. The key integrator settings were as follows:
GSTIFF integrator, stabilized index 2 (SI2) DAE formulation [15], ERROR=1E-2, KMAX=1
(to reflect the 3D contact-induced discontinuous nature of the simulation), MAXIT=10. The
HHT integrator was run in the beta version of the 2005 release, with the following key settings:
ERROR=1E-5, MAXIT=10, DAE formulation was index 3 [21, 4]. Note the difference between
the ERROR settings in the two cases. This is explained by the different ways in which the error
is quantified by the two integrators. In this context, the SI2-GSTIFF integrator has a much
stricter interpretation of the user-set ERROR. In has been noticed that in order to obtain
qualitatively comparable results, the HHT ERROR setting should be two orders of magnitude
more stringent than that of the SI2-GSTIFF integrator. To be on the safe side, for this model
the HHT integrator was run with an even tighter error setting, ERROR=1.E-5, which actually
is the HHT default setting for this attribute.

The speedup obtained when using the HHT integrator was more than fivefold: it took 1,713
seconds for the simulation to complete when using the HHT integrator, while it took 8,988
seconds for the GSTIFF integrator to finish the same simulation. The quality of the new results
is very good. The accelerations are always the most likely to show differences. Differences can
only rarely be noticed in velocity results, while the quality of the position level results is almost
always very good in both integrators. For comparison, in Fig. 7 the acceleration and velocity
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Figure 7. Acceleration and velocity of track 8.

results are displayed for track number 8. The results match overall very well everywhere with
the exception of some spikes that are explained by the sensitivity of the simulation with respect
to the large number of contact forces present in the model.

4.3. A model with flexible bodies

The model in Fig. 8 is an all-terrain vehicle (ATV) with a flexible frame. Beneath the ATV is
a 4-post shaker device, which is used to simulate a durability event represented by a simple-
harmonic translational displacement constraint at each of the four posts

The frame component in Fig. 8 is an MSC.ADAMS flexible-body modal representation [9]
that was created with the MSC.Patran finite element package; it contains 134 modes (from
56.7 Hz to 13.1 kHz). The purpose of this simulation is to recover the von Mises stresses in
the flexible body and identify critical stress locations in the frame.

The steering system has a motion constraint that applies a rotational displacement function,
causing the front wheels to turn left to right in a sinusoidal fashion. The tires of the vehicle
interact with the shaker by means of three dimensional solid-to-solid contact forces. A rider
weight of 230 pounds has been approximated with lumped masses and distributed between the
steering column assembly and frame as 30 pounds and 200 pounds, respectively. Remaining
parts in the model that are attached to the frame, such as the engine, are modeled as lumped
masses and are connected by using fixed joints.
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Figure 8. All-terrain vehicle (ATV).
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Figure 9. Comparison of vertical reaction force.

Altogether there are 28 moving parts, 43 joints, 5 motions, and 1 flexible body, leading to
a total number of 532 equations for the HHT integrator and 927 equations for the Index-3
GSTIFF (I3) formulation. The MSC.ADAMS modeling units used for this experiment were
pound force, pound mass, inch, and second. The duration of the simulation was 2.0 seconds,
which allows the ATV to move up and down several times. The GSTIFF integrator was run with
ERROR=1e-4, while HHT was run with ERROR=1e-5. A maximum time step (HMAX=5e-
4) was specified for each integrator so as to help minimize the burden of downstream stress-
recovery hotspots computations during results post-processing operations.

The simulation CPU time for GSTIFF was 367.08 seconds, while HHT completed the
simulation in 122.47 seconds. The simulation was run by using MSC.ADAMS 2005 on a
Windows 2000 laptop computer with a single 2.20 GHz Pentium 4 CPU and 1GB RAM.

There is excellent agreement in location of critical stresses as presented in Table 1; the
difference in peak stress between the two sets of results is less than 0.5%. The Z-component
of the reaction force in the spherical joint that connects the right half of the rear suspension
component to the frame is presented in Fig. 9. The plot shows good correlation between the
force results obtained with the GSTIFF and HHT integrators. Figure 10 presents the time
variation of the angular velocity of the engine assembly, and is an indicator of the severity of
the ATV pitching behavior. Figure 11 confirms that the difference between the angular velocity
computed with GSTIFF and HHT integrators is less than 1.6%.

5. Conclusions

The HHT method used in structural dynamics was adapted in this paper for the numerical
solution of index 3 Differential Algebraic Equations of multibody dynamics. Strategies for
corrector stopping criteria, error estimation, and step-size control were presented in detail. A
set of real-life numerical experiments indicate that simulations are at least two to three times
faster when compared with the default BDF-based integrator used in ADAMS [14, 23]. An
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Table I. Top Ten von Mises Hot Spots for Flexible Frame

GSTIFF
Stress TimeNo. Point

(lbf/inch2) (sec)
1 23956 300738 1.104
2 26654 204503 0.746
3 33918 204075 0.206
4 46577 200688 0.746
5 34560 198106 0.211
6 46580 193729 0.326
7 30060 190386 0.692
8 24704 173882 0.281
9 36156 171990 1.446

10 23007 170191 1.100

HHT
Stress TimeNo. Point

(lbf/inch2) (sec)
1 23956 300768 1.104
2 26654 204274 0.746
3 33918 204191 0.206
4 46577 200354 0.746
5 34560 197887 0.211
6 46580 192929 0.326
7 30060 189911 0.692
8 24704 173355 0.281
9 36156 172746 1.446

10 23007 170375 1.100

Stress
Difference
GSTIFF
vs. HHT

0.01%
-0.11%
0.06%

-0.17%
-0.11%
-0.41%
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explanation for the improved performance is based on three key observations. (1) The most time
consuming part of simulation is the computation of the Jacobian associated with the nonlinear
discretization system. The proposed algorithm contains heuristics to reduce as much as possible
the number of Jacobian evaluations. Unlike the BDF integrator employed by GSTIFF, in which
terms of the integration Jacobian can become disproportionately large as a result of a scaling
by the inverse of the step-size, the proposed integrator employs a different approach where
certain values are multiplied (never divided) by the step-size prior to populating the Jacobian.
As long as the step-size does not significantly change over several consecutive time steps, this
approach better supports the recycling of the Jacobian. (2) When compared with the BDF
Jacobian, the HHT Jacobian is numerically better conditioned, thereby leading to more reliable
corrections in the Newton-like iterative approach for large problems. Typically, this results in a
smaller number of corrector iterations. This desirable attribute is further enhanced by the fact
that since certain partial derivatives are scaled by the step-size h, or by h2 prior to populating
the Jacobian, small errors in these partial derivatives are going to have a less negative effect on
the overall quality of the Jacobian. (3) On one hand, the BDF formulas of order higher than
one contain regions of instability in the left plane. The higher the order, the smaller the region
of stability. On the other hand, BDF intrinsically is designed to maximize the integration
order/step-size. Because of these two conflicting attributes, particularly for models that are
mechanically stiff (models with stiff springs, flexible bodies, etc., that lead to systems with
large eigenvalues close to the imaginary axis) an order/step-size choice often lands the BDF
integrator outside the stability region [16]. These integration time-steps typically end up being
rejected, and smaller step-sizes are required to advance the simulation. This is a nonissue with
the HHT method, which is a fixed low-order method with good stability properties in the
whole left plane.

It should be pointed out that there are situations when BDF-type formulas are going to
work significantly faster. These are the cases where BDF can sustain a high integration order
throughout the simulation. If the model simulated allows BDF to work at order 5 or 6, the
HHT method cannot produce a solution of similar quality in comparable CPU time because
of the low-order integration formulas employed. However, this scenario is not very common,
because most real-life large models contain discontinuities or stiff mechanical components that
typically limit the BDF integration order to 1 or 2. As seen in the numerical experiments
presented, in these cases the HHT method has proved to be very competitive.

The accuracy of the results is good, occasional spikes in accelerations and reaction forces
being explained by the use of a variable step integration algorithm for the solution of an index
3 DAE problem, an operation that is conjectured [5] to further reduce the order of an already
low-order method. Quantitatively, the simulation results can be improved by decreasing the
user-specified integration error; qualitatively, the results could be improved by using a Runge-
Kutta method as proposed in [20], using the generalization of the HHT method as proposed
in [8], or reducing the index of the problem in an approach similar to the one proposed in [15].
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